
How to replicate: Building a CouchDB-compatible
database in 400 lines of Python

Marten de Vries

2021-01-22

Table of Contents
1 Introduction 2

1.1 Why CouchDB? . 2
1.2 Alternative implementations . 3
1.3 Goal . 4

2 Conflicts 5

3 Revision tree 7
3.1 Representation . 7
3.2 Updating the tree . 10

4 An in-memory database 13
4.1 Writing . 14
4.2 Reading . 17
4.3 Replication requirements . 19

5 Replication 21
5.1 Intermezzo: testing . 21
5.2 Asynchronous database API . 23
5.3 Replicator implementation . 25

6 Conclusion 32
6.1 Extending the prototype: ChairDB . 32
6.2 Final words . 32

TL;DR: A tutorial for building a database that replicates like CouchDB in Python. Also
introduces ChairDB.

1

https://ma.rtendevri.es/
https://github.com/marten-de-vries/chairdb

1 Introduction
1.1 Why CouchDB?
Years ago, I first encountered CouchDB. Soon, I was hooked. CouchDB is a database that
allows you to store and retrieve JSON documents through an HTTP API. If you have
multiple installations, say on a server and your own computer, you can easily and quickly
synchronize your database between them through a process called replication. On top of
that, it allowed you to host your web application directly from your database using so-called
CouchApps1. It was amazing.

Figure 1: Pages2, a simple wiki implemented as a CouchApp.

At the time, I heavily used an application I developed for my personal use. It was hosted
both by my laptop’s and my web server’s CouchDB. When I made a change on my laptop,
either to the application itself or by entering some data, it would transparently push the
change to the server and vice versa. If I did not have an internet connection3, I could access
the application locally. When at someone else’s computer, I could access the application
online. The same HTTP API that is used to keep two CouchDB databases in sync can
also be used to get notified of every change to your database. This makes it easy to build

1See https://github.com/couchapp/couchapp. Sadly, the technique fell out of favour.
2Pages can be downloaded from: https://github.com/couchone/pages
3This was a while ago, clearly. . . Definitely before affordable mobile data plans.

2

https://couchdb.apache.org/
https://github.com/couchapp/couchapp
https://github.com/couchone/pages

applications that update in real-time when someone enters data, without having to reload.
You simply listen to the ‘changes feed’, and process updates as they come in. This was
very nice compared to having to implement long polling in your own backend API. Also,
you would get an admin interface for free. The cost was adhering to CouchDB’s data model,
but that was an acceptable trade-off.

Figure 2: Fauxton, the built-in CouchDB admin interface.

1.2 Alternative implementations
Skip forward a couple of years, and somehow this nice way of developing applications seemed
to have mostly failed to achieve traction. Maybe because users don’t like it if you ask them
to install a database just to get your application working offline. Or perhaps developers
don’t like being that constrained on the server, e.g. when it comes to authentication4 and
authorization5. Still, the CouchDB ecosystem was active and evolving. You could embed

4There was no way for a user to ask for a password reset, for example. See for a more thorough discussion
this blog post by Nolan Lawson from 2013.

5For example, you can only restrict reading databases, not documents. This lead to db-per-user
workarounds which come with downsides of their own.

3

https://nolanlawson.com/2013/11/15/couchdb-doesnt-want-to-be-your-database-it-wants-to-be-your-web-site/
https://docs.couchdb.org/en/latest/config/couch-peruser.html
https://docs.couchdb.org/en/latest/config/couch-peruser.html

a CouchDB-like database in your smartphone application using TouchDB6 (nowadays
CouchDB-Lite). And with the rise of JavaScript data storage APIs7 in the browser came
PouchDB, which allows you to do the same inside a web application. I jumped on that and
for a while worked on trying to port the (by now mostly abandoned) CouchApp paradigm
over to it, culminating in a demo, which allowed you to run an existing CouchApp entirely
from the user’s disk with only minimal changes being necessary thanks to the then brand
new service workers. But I never got around to extending ‘PouchApps’ into a full-blown
project without the rough edges.

Forwarding to today, CouchDB is still going strong, and currently in the process of having
its internals rewritten on top of FoundationDB. There’s even ongoing work to support
document-level access control. PouchDB has matured, and is a popular IndexedDB wrapper.
The feature that sets it apart among those is replication.

1.3 Goal
My aim so far has been to explain why I think CouchDB and its replication are interesting,
and to show the state of the field. While I have been a long-time CouchDB user, I never
got around to actually trying to understand how it and its replication work from first
principles. When I recently decided to examine what so far had seemed like a magic trick,
my first thought was to look at PouchDB’s internals8. Sadly, that alone was not enough.
Partly, because PouchDB is a mature implementation which handles a lot of edge cases.
Partly because its control flow is hard to follow, as it was written at a time when callbacks
were still the only way of doing asynchronous control flow in JavaScript. To get the overview
I decided to build my own minimal prototype of a CouchDB-compatible database, including
replication, instead. This blog post summarizes my attempt to do so using the Python
programming language.

Before we get to it, I should mention Alexander Shorin previously embarked on a similar
project. In my opinion it oversimplifies conflict handling a bit, which comes at a cost to
correctness, but it’s an impressive resource worth checking out nonetheless. That project is
what finally convinced me to give it a try myself. More recently, Garren Smith wrote a
mini-CouchDB in Rust. That prototype isn’t complete enough to support replication, but
it gives a nice introduction to using FoundationDB like CouchDB will soon do. Very much
worth a look as well!

6iOS: https://github.com/couchbaselabs/TouchDB-iOS; Android: https://github.com/couchbaselabs/
TouchDB-Android

7First WebSQL. It was deprecated due to the specification essentially being ‘do what SQLite does’.
These days, there’s IndexedDB.

8See https://github.com/pouchdb/pouchdb. CouchDB’s source code is pretty accessible as well, but it’s
written in Erlang, which I cannot write and only somewhat read.

4

https://www.couchbase.com/products/lite
https://pouchb.com/
https://gist.github.com/marten-de-vries/3bfaf635f9efdbcf5102
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://blog.couchdb.org/2020/02/26/the-road-to-couchdb-3-0-prepare-for-4-0/
https://blog.couchdb.org/2020/02/26/the-road-to-couchdb-3-0-prepare-for-4-0/
https://www.foundationdb.org/
https://github.com/apache/couchdb-documentation/pull/424/files
https://github.com/apache/couchdb-documentation/pull/424/files
https://www.python.org/
https://www.python.org/
https://github.com/kxepal/replipy
https://github.com/kxepal/replipy
https://www.garrensmith.com/blogs/mini-couch-hack-week
https://www.garrensmith.com/blogs/mini-couch-hack-week
https://github.com/couchbaselabs/TouchDB-iOS
https://github.com/couchbaselabs/TouchDB-Android
https://github.com/couchbaselabs/TouchDB-Android
https://www.w3.org/TR/webdatabase/
https://www.sqlite.org
https://w3c.github.io/IndexedDB/
https://github.com/pouchdb/pouchdb
https://github.com/apache/couchdb-couch

2 Conflicts9

The first thing to figure out is how to represent documents and their metadata in our
database10. If you’ve used CouchDB, you know that each document has (at least) two
special fields: ’_id’ and ’_rev’. The first specifies the key under which the document is
stored11 in the database. It’s what you use to retrieve the document again. The second
is short for ‘revision’. A revision consists of two parts: an incrementing integer telling
us the version of this document, and a hash of the document and all its metadata. For
example: ‘1-85a961d0d9b235b7b4f07baed1a38fda’. In this prototype, we will not actually
bother with calculating hashes: as long as they uniquely identify documents, that’s good
enough. Even PouchDB got away with using random UUIDs for quite some time without
major issues. The revision is used to resolve conflicts. Let’s walk through an example to
understand how that works.

Figure 3: Trees next to a road.

Imagine a municipality that keeps track of all the trees it plants in a database. In the
morning, employee Bob comes along and plants a tree somewhere at a roadside. He dutifully
updates the record for the current plot of land on his smartphone (revision ‘1-1a9c’ gets

9A more thorough discussion of conflicts can be found in the CouchDB documentation.
10For our prototype, we will ignore attachments, and focus on storing JSON documents only.
11We will also ignore secondary indexes (both CouchDB views and the newer Mango query server).

5

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
https://github.com/pouchdb/pouchdb/issues/4642
https://docs.couchdb.org/en/stable/replication/conflicts.html
https://docs.couchdb.org/en/stable/api/document/common.html#attachments

replaced with ‘2-e3b0’), but as this is in a remote spot, the information is not synced to the
municipality’s server immediately. To make matters worse, his phone’s battery dies before
this can happen. While the phone is switched off, Jane reaches the same location with a
second tree. She plants it, updates the database record (revision ‘1-1a9c’ gets replaced
with ‘2-6e05’), and goes on her way. Soon afterward, her phone syncs her changes to the
server (which now also has ‘2-6e05’ as its latest revision).

When Bob’s phone is turned on again, it also replicates its record to the database. Contrary
to what you might expect, this succeeds. But now the server has two versions of the same
document: ‘2-6e05’ and ‘2-e3b0’. This situation is called a conflict. If a user now requests
the record for the roadside location, a CouchDB-like database will arbitrarily give them the
one with the highest revision (the so-called ‘winner’). In this case, Bob’s:

>>> max('2-6e05', '2-e3b0')
'2-e3b0'

Figure 4: The revision tree for the roadside record on the municipality’s server.

Clearly, this is unacceptable. If nothing were done, Jane’s record update would be lost,
through no fault of her own. This is why CouchDB’s documentation recommends you either
resolve conflicts on each read, or have a background process that watches for conflicts and
resolves them. Let’s say the municipality uses the latter approach. This background process
then requests the two latest versions of the document. It creates a record which includes
both of the newly planted trees, and replaces ‘2-e3b0’ (Bob’s revision) with a new revision
‘3-5bd6’. This doesn’t yet resolve the conflict. For that, we also need to remove Jane’s
revision (‘2-6e05’) by replacing it with a new revision (‘3-b617’). This revision marks the
removal using an (otherwise empty) document with a ‘_deleted’ field. Such a revision is
called a ‘tombstone revision’ in CouchDB terminology.

6

Note that if the background process had removed12 Bob’s revision (‘2-e3b0’) and stored
the new revision as a continuation of Jane’s revision (‘2-6e05’) instead, this also would
have resolved the conflict. The point is that there should be at most one last revision that
is not a tombstone revision13.

3 Revision tree
The municipality story makes clear that just storing a revision per document isn’t enough.
If the background process doesn’t tell the database which ‘branch’ to extend (Bob’s or
Jane’s), the database cannot know which one to pick. In fact, the only logical solution from
the database’s perspective in such a situation would be to add the new record as another
conflicting revision, making the problem worse.

Instead, CouchDB-like databases keep all previous revisions. The most efficient way to store
this is in a tree structure called the ‘revision tree’. The revision tree for our municipality
example was already given previously as a figure. Our example tree contains two (‘last’)
leaf nodes, one of which is a tombstone revision, and has a single root node. To make
sure revision trees don’t increase in size indefinitely as data is added to the database,
CouchDB-like databases implement two mechanisms:

1. Compaction. This removes all information about non-leaf nodes except their revision.
In our example, that means that no information about the number of trees that are
planted is kept except for the final record (‘42 trees planted’). Compaction is the
reason you should not rely on revisions as a history mechanism in CouchDB. If you
require history information, you need to store it explicitly in each version of your
document instead. To simplify our implementation, we design our data structures
such that they can only store document information about the leaf node. This is
equivalent to performing compaction immediately after each write.

2. Revision pruning. This removes old revisions from the revision tree. Only revisions
that are separated from a leaf node less than the revisions limit are kept. By
default the last 1000 revisions are kept, but this is configurable.

3.1 Representation
With all that out of the way, it’s time to get busy. Let’s implement a revision tree. The
easiest way is to implement it as a list of branches14. It makes the revision tree for the

12With ‘remove’ I mean replacing it with a tombstone revision. ‘True’ deletion is possible in CouchDB,
but not recommended because it messes up replication. As such, this prototype will not implement that
operation. Neither does PouchDB, by the way.

13Incidentally, that also means that if you remove a document which has conflicts, it will not disappear.
Instead, the conflict with the highest revision will be promoted to be the new ‘winner’.

14Why a list of branches and not a real tree structure? I’m glad you asked. The short answer is that it
makes a lot of the algorithms described here more complex. It was my initial approach, but I never got
revision pruning to work that way. The code at that time can be found here. It’s possible to do it I assume,
but it’s hard. To the point where CouchDB and PouchDB both convert their internal tree structure into
something similar to the ‘list of branches’ representation used here and back again when doing revision
pruning. A tree would definitely waste less memory, though.

7

https://docs.couchdb.org/en/stable/api/database/misc.html#post--db-_purge
https://docs.couchdb.org/en/stable/api/database/misc.html#post--db-_purge
https://github.com/pouchdb/pouchdb/issues/802
https://github.com/marten-de-vries/chairdb/blob/bd35b4212e4acffa3a0442b273c2ea3ba1280060/microcouch/revtree.py

roadside record look like this in code:

>>> bob_branch = Branch(leaf_rev_num=3, path=['5bd9', 'e3b0', '1a9c'],
... leaf_doc_ptr={'trees_count': 42})
>>> jane_branch = Branch(leaf_rev_num=3, path=['b617', '6e05', '1a9c'],
... leaf_doc_ptr=None)
>>> tree = RevisionTree([bob_branch, jane_branch])

You can see that we store, for each leaf, its revision number, the revision hashes of itself
and all its ancestor nodes and the (user-supplied) document. If this is a tombstone revision,
the document is None. Branch is simply a named tuple:

import typing

class Branch(typing.NamedTuple):
leaf_rev_num: int
path: list
leaf_doc_ptr: typing.Optional[dict]

def index(self, rev_num):
"""Convert a revision number to a Branch.path index"""

return self.leaf_rev_num - rev_num

The index method allows us to get the revision hash for a revision number. Let’s verify it
works:

>>> jane_branch.path[jane_branch.index(rev_num=2)]
'6e05'

It does. Now what about RevisionTree? We decided our RevisionTree representation is
essentially a list (of branches), so let’s inherit from that. If we keep the branches ordered
by highest revision number and hash, that should make determining the winning revision
easier later on.

class RevisionTree(list):
def __init__(self, branches):

super().__init__(branches)

used to keep the tree sorted by leaf's revision number and hash
self._keys = [self._by_max_rev(branch) for branch in self]

def _by_max_rev(self, branch):
branch.path[0] is the leaf's revision hash
return branch.leaf_rev_num, branch.path[0]

So far so good. Now let’s implement some of the revision tree operations we discussed.
First, finding the branch with the winning revision:

8

def winner_idx(self):
"""Returns the index of the winning branch, i.e. the one with the
highest leaf rev that isn't deleted. If no such branches exist, a
deleted one suffices too.

Assumption: branches are sorted already. (Longest branches & highest
rev hashes last)

"""
for i in range(len(self) - 1, -1, -1):

if self[i].leaf_doc_ptr is not None:
return i # we have a non-deleted winner

return len(self) - 1 # no non-deleted ones exist

Note that the loop iterates from the end of the list to the start. This means it iterates from
the branch with the highest leaf revision to the branch with the lowest leaf revision. Let’s
make sure this correctly points to Bob’s branch as the winner:

>>> tree[tree.winner_idx()] == bob_branch
True

Useful. But what if we don’t want to get just the winner, but want to find branches by
revision? That’s possible too:

def find(self, rev_num, rev_hash):
"""Find the branches in which the revision specified by the arguments
occurs.

"""
for branch in self.branches():

i = branch.index(rev_num)
if 0 <= i < len(branch.path) and branch.path[i] == rev_hash:

yield branch

Not so fast, what’s this self.branches() thing? Well, it’s a trivial method, but I gave it
a name because it’s very often useful:

def branches(self):
"""All branches in the tree. Those with the highest revision number and
hash first.

"""
return reversed(self)

OK. We can now find out Bob’s branch, knowing only the revision he added, as follows:

>>> next(tree.find(2, 'e3b0')) == bob_branch
True

9

Success! One final method for querying the RevisionTree. What if we want to iterate over
all revisions in the tree? That might not sound useful now, but I promise we’ll find a use
for it when implementing replication later on:

def all_revs(self):
"""All revisions in the tree as (branch, rev_num) tuples."""

for branch in self.branches():
for i in range(len(branch.path)):

yield branch, branch.leaf_rev_num - i

3.2 Updating the tree
Alright, by now we have a feel of what a revision tree looks like, but we need to figure out
how to build one up incrementally.

What information is available during insertion? Well, definitely the new revision’s revision
number. We also talked about requiring one or more ancestor revision hashes next to the
‘new’ one. And of course we need the document contents. Oh, and finally this revision limit.

It turns out there are four possible cases during insertion. But our first function will only
handle two of them itself:

1. The revision that we try to insert is already in the tree. That’s easy: we simply do
nothing.

2. The typical case that Jane and Bob experienced. They extended a previous revision
(‘1-1a9c’) that was a leaf revision with one (or more) new revision(s): ‘2-e3b0’ or
‘2-6e05’, in their case.

The implementation is as follows. There are inline examples to understand how the code
handles both cases:

def merge_with_path(self, doc_rev_num, doc_path, doc, revs_limit=1000):
for i in range(len(self) - 1, -1, -1):

branch = self[i]
1. check if already in tree. E.g.:
#
branch.leaf_rev_num = 5
branch.path = ['e', 'd', 'c']
#
doc_rev_num = 3
doc_path = ['c', 'b', 'a']
j = branch.index(doc_rev_num)
if 0 <= j < len(branch.path) and branch.path[j] == doc_path[0]:

return # it is. Done.

2. extend branch if possible. E.g.:
#

10

branch.leaf_rev_num = 3
branch.path = ['c', 'b', 'a']
doc_rev_num = 5
doc_path = ['e', 'd', 'c', 'b']
k = doc_rev_num - branch.leaf_rev_num
if 0 <= k < len(doc_path) and doc_path[k] == branch.path[0]:

full_path = doc_path[:k] + branch.path
del self[i]
del self._keys[i]
self._insert_branch(doc_rev_num, full_path, doc, revs_limit)
return # it is. Done.

otherwise insert as a new leaf branch:
self._insert_as_new_branch(doc_rev_num, doc_path, doc, revs_limit)

Note that for the typical case (2), we no longer need the ‘old’ branch, as it is com-
pletely incorporated into the ‘extended’ branch. That’s the reason the delete state-
ments are in there. There are some unfamiliar functions in this code block. We’ll get to
self._insert_as_new_branch soon, it implements the third and fourth cases we talked
about previously. But this is a good moment to introduce self._insert_branch, which
creates a branch and inserts it in the location that maintains the tree ordering.

import bisect

def _insert_branch(self, doc_rev_num, full_path, doc, revs_limit):
stem using revs_limit
assert revs_limit > 0
del full_path[revs_limit:]

branch = Branch(doc_rev_num, full_path, doc)
actual insertion using bisection
key = self._by_max_rev(branch)
i = bisect.bisect(self._keys, key)
self._keys.insert(i, key)
self.insert(i, branch)

As you can see, revision pruning becomes a simple operation courtesy of our ‘list of branches’
approach. If you don’t know about bisect.bisect, here’s the short version: given a sorted
list, it gives you the place to insert an item which will keep the list sorted. And it can do
so efficiently without going through the whole list15.

That handles the simple cases. So what are those other two?

3. Conflict introduction. This occurs on the server. After Jane’s phone syncs, the server
only contains her tree. But when Bob’s phone comes online, extending that tree will

15In O(log n) to be exact. But if you know about Big O notation, I probably don’t have to explain binary
search in the first place.

11

https://docs.python.org/3/library/bisect.html
https://en.wikipedia.org/wiki/Big_O_notation

fail. After all, Jane’s revision ‘2-6e05’ isn’t in ‘his’ branch. In this case, we could
just insert Bob’s branch as-is, but we don’t quite do that. Instead, we check if we can
find any common revisions in the past. The reason we do this is to make sure the
revision information in the ‘new’ branch is as complete as we can make it. In this
case it doesn’t make any difference, but if a lazy user only supplies the bare minimum
of ancestor revisions, it’s useful.

4. It’s possible that no common ancestors can be found. This probably occurs most
frequently when the RevisionTree is still completely empty. We simply insert the
new branch as-is in that case.

The code to handle these two more cases is as follows:

def _insert_as_new_branch(self, doc_rev_num, doc_path, doc, revs_limit):
for branch in self.branches():

3. try to find common history
start_branch_rev_num = branch.leaf_rev_num + 1 - len(branch.path)
start_doc_rev_num = doc_rev_num + 1 - len(doc_path)
maybe_common_rn = max(start_branch_rev_num, start_doc_rev_num)

branch_i = branch.index(maybe_common_rn)
doc_i = doc_rev_num - maybe_common_rn

common_rev = (
0 <= branch_i < len(branch.path) and
0 <= doc_i < len(doc_path) and
branch.path[branch_i] == doc_path[doc_i]

)
if common_rev:

success, combine both halves into a 'full_path'
full_path = doc_path[:doc_i] + branch.path[branch_i:]
break

else:
4. a new branch without shared history
full_path = doc_path

self._insert_branch(doc_rev_num, full_path, doc, revs_limit)

It’s worth noting that I make use of a for-else loop here, because as far as I know that’s a
statement exclusive to Python. Anyway, that’s all there is to the revision tree class. Let’s
try out our nice new merge method:

>>> tree2 = RevisionTree([])
>>>
>>> # the initial situation, uses case 4.
>>> tree2.merge_with_path(1, ['1a9c'], {'trees_count': 40})
>>> print(tree2)
[Branch(leaf_rev_num=1, path=['1a9c'],

12

https://docs.python.org/3/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops

leaf_doc_ptr={'trees_count': 40})]
>>>
>>> # Jane uploads her record, which uses case 2.
>>> tree2.merge_with_path(2, ['6e05', '1a9c'], {'trees_count': 41})
>>> print(tree2)
[Branch(leaf_rev_num=2, path=['6e05', '1a9c'],

leaf_doc_ptr={'trees_count': 41})]
>>>
>>> # Bob uploads using case 3, which creates the conflict.
>>> tree2.merge_with_path(2, ['e3b0', '1a9c'], {'trees_count': 41})
>>> print(tree2)
[Branch(leaf_rev_num=2, path=['6e05', '1a9c'],

leaf_doc_ptr={'trees_count': 41}),
Branch(leaf_rev_num=2, path=['e3b0', '1a9c'],

leaf_doc_ptr={'trees_count': 41})]

All seems to be in order. Next up, building a database out of the primitives we just wrote.
The hardest part is behind us!

4 An in-memory database
As this post tries to keep things simple, we won’t worry about persisting data to disk. Instead,
we’ll build an in-memory database. For indexes, we use sortedcontainers’s SortedDict type.
This allows us to both efficiently iterate over keys in sorted order16, and to quickly retrieve
their associated values17.

On the other hand, I will try to separate generic functions from ‘memory database’ specific
functions, allowing you to re-use the former when working on a disk-backed database.

Time to introduce some more CouchDB concepts, just in case you haven’t heard of them
yet:

• local documents. These are documents to which the normal rules don’t apply. They
cannot be replicated and do not keep a revision tree. Every write overwrites whatever
was stored under their ‘_id’ previously. Because of this, we implement a separate
index for them. They will also have their own specialized (but simpler) code.

• update sequence. This is a counter that keeps track of how many writes occurred
in the database.

• database id. This is a string that uniquely identifies this database during replication.
For an (ephemeral) in-memory database, using a random UUID is a pretty good
choice, but we allow the user to change it.

With that out of the way, let’s look at what our main class is going to look like18:
16With a time complexity of O(n).
17With a time complexity of O(1).
18If you’re wondering why I’m adding the word ‘sync’ everywhere, it’ll be explained in due time.

13

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/sorteddict.html

import uuid
import sortedcontainers

class SyncInMemoryDatabase:
def __init__(self, id=None):

self.id_sync = (id or uuid.uuid4().hex) + 'memory'
self.update_seq_sync = 0
self.revs_limit_sync = 1000

id -> document (dict)
self._local = sortedcontainers.SortedDict()
id -> DocumentInfo
self._byid = sortedcontainers.SortedDict()
seq -> id (str)
self._byseq = sortedcontainers.SortedDict()

You see we have a the separate index for local documents, as promised. That leaves the
other two. First, the ‘by seq’ index maps the update sequence at the time of the last
update to a document to that document’s id. This allows us to reconstruct the order in
which documents were updated. Replication needs that to keep track of what changed.
But perhaps the most important index is the ‘by id’ index19. It maps document IDs to a
DocumentInfo object. Which is another named tuple type:

class DocumentInfo(typing.NamedTuple):
rev_tree: RevisionTree
winning_branch_idx: int
last_update_seq: int

You already know all about the revision tree. We cache the output of RevTree.winner_idx()
after each write in the winning_branch_idx field for efficiency. Finally, last_update_seq
is the same value that’s used as key in the ‘by sequence’ index. We keep it around so we
can remove old records from that index.

4.1 Writing
Time to implement some methods20. Let’s start with adding documents to our database.
To do so, we first need to pre-process the user’s input, so let’s write a function for that. This
consists of extracting information we need, and cleaning up the document before insertion.
The exact steps are:

1. extract the document ID (and remove it from the document)
19Curious how other implementations handle indices? I know I was. The on-disk (B+ tree) file format

of couchstore can be found here. It’s similar to CouchDB’s, I believe. A discussion of PouchDB’s latest
database schema can be found here.

20In the next few sections, every function that has ‘self’ as its first argument is a method of the
SyncInMemoryDatabase class.

14

https://github.com/couchbaselabs/couchstore/wiki/Format
https://github.com/pouchdb/pouchdb/pull/4984

2. extract the revision number, revision hash and ancestor revision hashes21 (and remove
them from the document)

• NB: a local document doesn’t have any of those.

3. if this is an attempt to delete the document (tombstone revision), set the document
to None.

We then return the ID, the revision information (None for a local document) and the cleaned
up document.

def prepare_doc_write(doc):
"""Normalize _revisions field & handle delete flag"""

id = doc.pop('_id')
if is_local(id):

revs = None
else:

rev_num, rev_hash = parse_rev(doc.pop('_rev'))
revs = doc.pop('_revisions', {'start': rev_num, 'ids': [rev_hash]})
assert rev_num == revs['start'], 'Invalid _revisions'
assert revs['ids'][0] == rev_hash, 'Invalid _revisions'

if doc.get('_deleted'):
doc = None

return id, revs, doc

def is_local(id):
return id.startswith('_local')

def parse_rev(rev):
num, hash = rev.split('-')
return int(num), hash

The user-facing API is actually pretty simple. We take a document, and store it returning
nothing. As explained before, we create a separate code path for local documents:

def write_sync(self, doc):
id, revs, doc = prepare_doc_write(doc)
if revs:

self._write_normal(id, revs, doc)
else:

self._write_local(id, doc)

This separate code path just updates the key value store:

def _write_local(self, id, doc):
if doc is None:

21For the format of the _revisions field, see https://docs.couchdb.org/en/stable/api/document/common.
html#getting-a-list-of-revisions.

15

https://docs.couchdb.org/en/stable/api/document/common.html#getting-a-list-of-revisions
https://docs.couchdb.org/en/stable/api/document/common.html#getting-a-list-of-revisions

self._local.pop(id, None) # silence KeyError
else:

self._local[id] = doc

The more interesting code path uses the revision tree logic we implemented previously:

def _write_normal(self, id, revs, doc):
try:

tree, _, last_update_seq = self._byid[id]
except KeyError:

tree = None
else:

update the by seq index by first removing a previous reference to
the current document (if there is one), and then (later)
inserting a new one.
del self._byseq[last_update_seq]

new_doc_info = update_doc(id, revs, doc, tree, self.revs_limit_sync)
self.update_seq_sync += 1
actual insertion by updating the document info in the 'by id' index.
self._byid[id] = DocumentInfo(*new_doc_info, self.update_seq_sync)
self._byseq[self.update_seq_sync] = id

There’s quite a bit going on here. Let’s break it down. At this point, it’s clear we’re going
to modify the database. So, we’ll have to update both of the main indices. Our first step is
to get the existing revision tree (if there is one) for this document ID. Soon, we’ll overwrite
it with a new one. We also remove the soon-to-be outdated entry in the ‘by sequence’ index.

After that’s done, we update the revision tree to include the new revision. We’ll get to
the details of that soon. The important thing is that we get back a fresh revision tree and
winning branch index from this process. The only thing left to do for us is to increment the
‘update sequence’, as the database has been modified, and to store the new values in the
indices.

Alright, now that that’s clear, let’s go back to the part I glossed over:

def update_doc(id, revs, doc, rev_tree, revs_limit):
if rev_tree is None:

rev_tree = RevisionTree([]) # new empty tree

rev_tree.merge_with_path(revs['start'], revs['ids'], doc, revs_limit)
return rev_tree, rev_tree.winner_idx()

It’s not that complicated: we simply create a new revision tree if there wasn’t one, and
merge the user’s new revision into the retrieved tree. Then we return the values we need in
_write_normal. All the real logic was already implemented previously.

16

And that’s all there is to writing a document22. Let’s try it out, playing out what happens
on Jane’s phone before syncing:

>>> db = SyncInMemoryDatabase()
>>> db.write_sync({'_id': 'roadside', '_rev': '1-1a9c', 'tree_count': 40})
>>> db.write_sync({'_id': 'roadside', '_rev': '2-6e05', 'tree_count': 40,

'_revisions': {'start': 2, 'ids': ['6e05', '1a9c']}})
>>> db._byid['roadside'].rev_tree
[Branch(leaf_rev_num=2, path=['6e05', '1a9c'],

leaf_doc_ptr={'tree_count': 40})]

So far so good. But that last line isn’t a user-friendly way of reading documents at all.
Let’s implement a better API.

4.2 Reading
Probably the most common operation on a database is to read a document given the
document ID. But as we’ve seen, there isn’t necessarily a single document version. Instead,
we allow the user to specify which version(s) they want to retrieve using a revs argument.
It can have a couple of different values:

• 'winner': in this case, we just return the winning revision’s document. It’s what you
get by default in CouchDB if you request a document without any further information.
Use with caution, because this can give unexpected results if there are conflicts.

• 'all': in this case, we return all leaf revision documents. This may include tombstone
revisions. The CouchDB equivalent is setting open_revs=all.

• a list of revisions. In this case, we return a document for each of the requested
revisions. To be exact, we return the leaf document of the branch in which the
revision occurs. Remember, we do not actually keep the document of old revisions
around, like CouchDB does (for a while). Instead, it’s like we’re always using
CouchDB’s latest=true option. The CouchDB equivalent for this revs value is also
the open_revs option.

There is one final parameter to our read method. It’s called include_path and tells
us whether ancestor revisions should be included as a _revisions field of the returned
document. This is useful during replication.

Phew. Who knew reading a document could get so complex? Time to look at the code:

def read_sync(self, id, revs, include_path=False):
try:

if is_local(id):
load from the _local key-value store

22Actually, this is not the API CouchDB presents you by default. Instead, it’s the one you get when
you use the ‘new_edits=false’ option. The ‘normal’ one tries to prevent you from inserting conflicts
unnecessarily, and generates new revision numbers and hashes for you. But by now, you know enough about
CouchDB’s internal that you don’t need for it to hold your hand. There are no fundamental limitations
that prevent you from adding such behaviour, though.

17

https://docs.couchdb.org/en/stable/api/document/common.html#get--db-docid
https://docs.couchdb.org/en/stable/api/document/common.html#get--db-docid
https://docs.couchdb.org/en/stable/api/document/common.html#get--db-docid
https://docs.couchdb.org/en/stable/api/document/common.html#get--db-docid
https://docs.couchdb.org/en/stable/api/document/common.html#put--db-docid
https://docs.couchdb.org/en/stable/api/document/common.html#put--db-docid

yield to_local_doc(id, revs, self._local[id])
else:

find it using the 'by id' index
rev_tree, winner, _ = self._byid[id]
yield from read_docs(id, revs, include_path, rev_tree, winner)

except KeyError as e:
raise NotFound(id) from e

As you can see, it mostly just queries the indexes, and passes the result of to other functions,
before yielding their response. Why a yield, and not a return? Because when revs does
not equal ‘winner’, multiple revisions of the document might be returned. If the index
doesn’t contain a document, the NotFound exception is raised. That exception’s definition
is typical:

class ChairDBError(Exception):
"""Base class for all custom errors."""

class NotFound(ChairDBError):
"""Something (a document or database, probably) doesn't exist."""

Now, let’s first get the local document case out of the way. It isn’t really that interesting,
it’s just a read from a key/value store after all. The biggest surprise is that we add a
dummy ‘_rev’ value to imitate CouchDB. . .

def to_local_doc(id, revs, base):
assert revs == 'winner'

return {**base, '_id': id, '_rev': '0-1'}

Alright, time to get to the more difficult case of reading normal documents from the revision
tree. We first handle the ‘winner’ case. We can directly pull the correct branch from the
revision tree:

def read_docs(id, revs, include_path, rev_tree, winning_branch_idx):
if revs == 'winner':

winner information is passed in directly
branch = rev_tree[winning_branch_idx]
yield to_doc(id, branch, include_path)

else:
... walk the revision tree
yield from read_revs(id, revs, rev_tree, include_path)

We’ll ignore the other (read_revs()) cases for now, and look at to_doc first. It reconstructs
a CouchDB-style document given a branch. This mostly consists of re-creating the revision
information. If we’re dealing with a tombstone revision, we also need to represent that
information as JSON.

def to_doc(id, branch, include_path):
doc = {'_id': id, '_rev': rev(branch, branch.leaf_rev_num)}

18

if branch.leaf_doc_ptr is None:
doc['_deleted'] = True

else:
doc.update(branch.leaf_doc_ptr)

if include_path:
doc['_revisions'] = {'start': branch.leaf_rev_num,

'ids': branch.path}
return doc

def rev(branch, rev_num):
return f'{rev_num}-{branch.path[branch.index(rev_num)]}'

Next, let’s look at the cases where revs is not ‘winner’. First, the ‘all’ case, which is easy
thanks to our trusty RevisionTree.branches() method. And actually, the other case isn’t
much harder thanks to the RevisionTree.find() method we wrote previously. Although
it does require us to perform some parsing: our API expects revisions in string format, but
find() expects a revision number and revision hash.

def read_revs(id, revs, rev_tree, include_path):
if revs == 'all':

all leafs
for branch in rev_tree.branches():

yield to_doc(id, branch, include_path)
else:

search for specific revisions
for rev in revs:

for branch in rev_tree.find(*parse_rev(rev)):
yield to_doc(id, branch, include_path)

And that’s it. It’s everything you need to read from a CouchDB. You might notice that
we didn’t implement a lot of options supported by CouchDB. That’s because you don’t
need them during replication or casual use. Most of the remaining options are either
attachment-related (which we don’t implement), convenience options for users, or expose
more internal information to the caller.

Anyway, let’s read back the (single) document we just wrote to the database as a quick test:

>>> list(db.read_sync(id='roadside', revs='all', include_path=True))
[{'_id': 'roadside', '_rev': '2-6e05', 'tree_count': 40,

'_revisions': {'start': 2, 'ids': ['6e05', '1a9c']}}]

It works! Much better than manually deciphering the ‘by id’ index.

4.3 Replication requirements
By now we can read and write documents. But the replication process needs two more
endpoints. Luckily, they are simpler to add.

19

https://docs.couchdb.org/en/stable/api/document/common.html#get--db-docid

First, as previously discussed, the replication process needs to have a record of all the
changes that were made to the database. This record is the reason why we keep the ‘by
sequence’ index, which we expose to the user through the changes feed API. This API
has many options, but we limit it to the bare minimum required for replication. That
includes implementing the endpoint such that it gives us all leaf revs (the non-default
style='all_docs' option).

def changes_sync(self, since=None):
for seq in self._byseq.irange(minimum=since, inclusive=(False, False)):

id = self._byseq[seq]
rev_tree, winner, _ = self._byid[id]
yield build_change(id, seq, rev_tree, winner)

Alright, that’s doable. The user can specify from which update sequence to start listing all
database changes23, and then we get the document information for each of these changes.
The only thing left is to give this information back to the user in a structure close to what
CouchDB returns:

def build_change(id, seq, rev_tree, winning_branch_idx):
winning_branch = rev_tree[winning_branch_idx]
deleted = winning_branch.leaf_doc_ptr is None
leaf_revs = [rev(b, b.leaf_rev_num) for b in rev_tree.branches()]
return Change(id, seq, deleted, leaf_revs)

class Change(typing.NamedTuple):
"""A representation of a row in the _changes feed"""

id: str
seq: int
deleted: bool
leaf_revs: list

You might be interested to see the result of running this on Jane’s database:

>>> list(db.changes_sync())
[Change(id='roadside', seq=2, deleted=False, leaf_revs=['2-6e05'])]

Looks good. Note that the previous edit of the ‘roadside’ record isn’t shown. This is by
design: recall how we removed old entries from the ‘by sequence’ index.

Now let’s implement our final end point: the revision difference reporter. Given a document
ID and a list of revisions, it tells us which of those revisions are unknown to the database.
This is where the all_revs() method comes in. But I’m getting ahead of myself. First,
we need to get the revision tree for the id:

def revs_diff_sync(self, id, revs):
try:

23Thanks to SortedDict’s irange method.

20

https://docs.couchdb.org/en/stable/api/database/changes.html
http://www.grantjenks.com/docs/sortedcontainers/sortedlist.html#sortedcontainers.SortedList.irange

rev_tree = self._byid[id].rev_tree
except KeyError:

rev_tree = None
return revs_diff(id, revs, rev_tree)

Once we have it, we extract from it all known revisions for this document ID. Note that if
there is no revision tree, there are no known revisions in the database.

def revs_diff(id, revs, rev_tree):
if rev_tree:

revs_in_db = (rev(*r) for r in rev_tree.all_revs())
else:

revs_in_db = ()
return id, {'missing': set(revs).difference(revs_in_db)}

Finally, we compare the list of revisions given by the caller with the list of revisions known
to be in the database. This returns all the unknown revisions on the user’s list using a
set difference operation. Note that because these are set operations, it doesn’t matter if
revisions occur more than once in either of the lists.

Using this endpoint looks like this:

>>> list(db.revs_diff_sync('roadside', revs=['3-unknown', '2-6e05']))
['roadside', {'missing': {'3-unknown'}}]

As you’d expect, only the unknown revision is returned. We now have all the elements in
place to move our attention to the replication process itself.

5 Replication
A replicator is an implementation of the CouchDB replication protocol. This is a process
that relies only on the user-facing APIs we just designed. In fact, you could wrap up the
methods we just wrote in an HTTP API, and CouchDB’s replicator would be able to sync
databases to and from it. So would PouchDB’s replicator. This is something I did in fact
do while working on this project, because it’s a great way to test it. Which brings me to. . .

5.1 Intermezzo: testing
This post makes it seem like I wrote all this code down at once. That’s not the case, I
experimented quite a bit before eventually settling on this design. It might be interesting
to know a bit about my work process here.

As I just explained, I wrapped the API inside a CouchDB-compatible HTTP API so I
could test it using CouchDB’s replicator. There is a relatively straight-forward mapping
between the two. What I did not yet explain is that you only need to implement a subset of
the API to perform one-way replication. For example, if you implement just the id_sync,
update_seq_sync, changes and read properties/methods, that’s enough for CouchDB to
replicate data from your database into a database on its own. Similarly, to replicate data

21

https://docs.couchdb.org/en/stable/replication/protocol.html

Figure 5: Testing helps you identify problems up-front.
22

from some database to your own, you only need to implement id_sync, revs_diff_sync
and write_sync. As you can see, this nicely divides the amount of work you need to do
into about half.

While simply using CouchDB’s replicator to replicate a couple of databases I had lying
around back and forth provided the bulk of the testing, I also wrote a couple of unit tests,
mostly targeting RevisionTree. They are quite similar to the inline snippets you’ve seen
throughout this post that demonstrate what individual functions can do24.

Finally, while writing my own replicator, I noticed that it would also be convenient if
that replicator could receive changes from a remote (HTTP) CouchDB, without having to
expose its own HTTP API. That way, I could test my own replicator instead of CouchDB’s.
My solution was to wrap the CouchDB HTTP API into the same API as we just wrote.
There’s one problem though: HTTP requests can be slow. There are two possible solutions.
The first is the most mature one: just throw a thread pool at the problem. But I thought
this would be a good moment for me to try out Python’s comparatively recent asyncio
ecosystem instead. I’d been wanting to do so for some time, anyway.

5.2 Asynchronous database API
The first step was to define an asynchronous API for the database. Just to be clear: this
is lunacy for an in-memory database on its own. Almost by definition, such a database is
synchronous. But it makes some sense when wrapping the CouchDB HTTP API. After
all, the CouchDB database in question could be hosted at the other side of the planet,
introducing some real latency to the process.

In the end, I implemented the asynchronous API for the in-memory database for code that
requires compatibility with async implementations. This way, I could run the new replicator
against both CouchDB and in-memory databases. But I also exposed the synchronous API
for code that does not need that compatibility. Let’s go through this wrapper code.

import asyncio

class InMemoryDatabase(SyncInMemoryDatabase):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

self._update_event = asyncio.Event()

def _write_normal(self, *args, **kwargs):
super()._write_normal(*args, **kwargs)

self._update_event.set()
self._update_event.clear()

24It so happens to be that writing the snippets for this blog post led me to discover a (now fixed) bug.

23

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html

async def changes(self, since=None, continuous=False):
""""Like CouchDB's _changes with style=all_docs"""

while True:
send (new) changes to the caller
for change in self.changes_sync(since):

since = change.seq
yield change

if not continuous:
stop immediately.
break

wait for new changes to come available, then loop
await self._update_event.wait()

I thought I’d start with the only part that arguably isn’t just a wrapper. We introduce an
asyncio.Event that we set whenever the database is modified. This allows us to implement
the continuous option of the changes feed. When this option is True, the changes() function
never returns but will instead block until a new change is available. The replicator can use
this to implement continuous replication, which means that a change will be replicated
over immediately as it is entered into the database.

The other wrapper methods are simpler. The most complex ones are arguably the read and
write methods, which support reading or writing multiple documents with a single call.
That’ll come in handy while writing the replicator, as it’s supported by CouchDB as well.

@property
def id(self):

return as_future_result(self.id_sync)

@property
def update_seq(self):

return as_future_result(self.update_seq_sync)

async def revs_diff(self, remote):
async for id, revs in remote:

yield self.revs_diff_sync(id, revs)

async def write(self, docs):
async for doc in docs:

try:
self.write_sync(doc)

except Exception as exc:
yield exc

async def read(self, requested, include_path=False):

24

https://docs.python.org/3/library/asyncio-sync.html#asyncio.Event
https://docs.couchdb.org/en/stable/api/database/changes.html#continuous

async for id, revs in requested:
try:

for doc in self.read_sync(id, revs, include_path):
yield doc

except NotFound as exc:
yield exc

async def ensure_full_commit(self):
pass

@property
def revs_limit(self):

return as_future_result(self.revs_limit_sync)

async def set_revs_limit(self, value):
self.revs_limit_sync = value

Ah, I forgot to describe two things. First of all, there is a new method called
ensure_full_commit. It’s there because the replication protocol requires it, but for an
in-memory implementation, it’s a no-op. You might also wonder what as_future_result
does. It’s a way of making synchronous properties awaitable. The implementation is as
follows:

def as_future_result(value):
future = asyncio.get_event_loop().create_future()
future.set_result(value)
return future

5.3 Replicator implementation
Now that we have a unified API, we can work on the actual replicator. Replication has
four inputs:

• the source database, changes from here are also applied to. . .
• the target database
• create_target: a boolean that tells us whether to create the target database if it’s

not there. This is mostly a HTTP API artifact, but we support it by implementing
an async create(self) -> bool method on the HTTP database. Of course, an
in-memory database will always exist when passed in, so no such method is necessary
in that case. This also requires the HTTP database to raise a NotFound error when
the database doesn’t exist.

• continuous: a boolean that tells us whether to stop replication when the target DB
contains all documents in the source DB, or whether to stay active waiting for new
changes to arrive.

Bidirectional replication, which is also known as synchronization, is nothing more than two
unidirectional replication jobs running simultaneously with exchanged ‘source’ and ‘target’

25

roles.

We define the replicator as a single function. This function is long. As such, we will discuss
it in multiple parts, sometimes interleaved with the functions it calls itself. While reading
this section, I recommend having the replication protocol documentation open. It gives
examples for each part of the process, and the code comments refer to its sections.

import uuid

REPLICATION_ID_VERSION = 1

async def replicate(source, target, create_target=False, continuous=False):
hist_entry = {'session_id': uuid.uuid4().hex,

'start_time': timestamp(),
'doc_write_failures': 0,
'docs_read': 0}

2.4.2.1. Verify Peers & 2.4.2.2. Get Peers Information
2.4.2.1.1. Check Source Existence & 2.4.2.2.1. Get Source Information
await source.update_seq

2.4.2.1.2. Check Target Existence & 2.4.2.2.2. Get Target Information
last_seq = await get_target_seq(target, create_target)
hist_entry['start_last_seq'] = last_seq

A good start. We store some information about how the replication process goes in
hist_entry. We also generate a unique replication session identifier. As an aside,
timestamp is implemented as follows:

import email.utils

def timestamp():
return email.utils.format_datetime(email.utils.localtime())

Apart from that, we check whether both databases exist by requesting their update_seq.
In the case of the target database, we create it as necessary:

async def get_target_seq(target, create_target):
try:

return await target.update_seq
except NotFound:

2.4.2.1.3. Create Target?
if create_target:

await target.create()
second chance
return await target.update_seq

2.4.2.1.4. Abort

26

https://docs.couchdb.org/en/stable/replication/protocol.html

raise

OK, so by now both databases exist. We first want to know if replication has already
occurred previously between these databases by generating a replication ID:

2.4.2.3. Find Common Ancestry
- 2.4.2.3.1. Generate Replication ID
replication_id = await gen_repl_id(source, target, create_target,

continuous)

gen_repl_id simply hashes all information known about this replication job:

import hashlib

async def gen_repl_id(source, target, create_target, continuous):
2.4.2.3.1. Generate Replication ID
repl_id_values = ''.join([

await source.id,
await target.id,
str(create_target),
str(continuous),

]).encode('UTF-8')
return hashlib.md5(repl_id_values).hexdigest()

Next, we query both databases for local documents named after this replication id, which
gives us the previous replication logs (if any). We compare them to see if they agree
previous replication occurred. If so, we found a so-called checkpoint. This means we
can start replication from the update_seq that was at the time the last one (stored in
startup_checkpoint):

- 2.4.2.3.2. Retrieve Replication Logs from Source and Target
log_id = f'_local/{replication_id}'
log_request = [(log_id, 'winner')]
source_log = await source.read(async_iter(log_request)).__anext__()
target_log = await target.read(async_iter(log_request)).__anext__()

- 2.4.2.3.3. Compare Replication Logs
startup_checkpoint = compare_replication_logs(source_log, target_log)
hist_entry['recorded_seq'] = startup_checkpoint

compare_replication_logs does the actual hard work:

def compare_replication_logs(source, target):
2.4.2.3.3. Compare Replication Logs
no_checkpoint = (

because there is no record of a previous replication
isinstance(source, NotFound) or
isinstance(target, NotFound) or
or because said replication happened under different (possibly

27

buggy) conditions
source['replication_id_version'] != REPLICATION_ID_VERSION or
target['replication_id_version'] != REPLICATION_ID_VERSION

)
if no_checkpoint:

return
if source['session_id'] == target['session_id']:

return source['source_last_seq'] # shortcut

try to find commonality in diverging histories:
session_ids = {item['session_id'] for item in source['history']}
for item in target['history']:

if item['session_id'] in session_ids:
found a previous shared session
return item['recorded_seq']

no such luck: there's no known checkpoint.

At this point, we either need to get all the changes from the source database or the changes
since the last checkpoint. Note that the changes() function is an async generator function.
That means it only generates changes when requested. For a while, no changes will be
retrieved yet. We’ll see that applies to a lot more functions.

2.4.2.4. Locate Changed Documents
- 2.4.2.4.1. Listen to Changes Feed
- 2.4.2.4.2. Read Batch of Changes
changes = source.changes(since=startup_checkpoint, continuous=continuous)
diff_input = revs_diff_input(changes, hist_entry)

The revs_diff_input function converts Changes into IDs and revisions as expected by
the _revs_diff method on the target database. It also keeps our history entry up-to-date.
Note that this is another async generator function.

async def revs_diff_input(changes, history_entry):
async for change in changes:

yield change.id, change.leaf_revs
history_entry['recorded_seq'] = change.seq

- 2.4.2.4.3. Calculate Revision Difference
r_input = read_input(target.revs_diff(diff_input))

Next up, revs_diff will tell us which documents to read from the source database because
they aren’t in the target database. This again requires transforming the results slightly
to match the read() function’s input. Note that at this point, still nothing is actually
happening because of all the async generators.

async def read_input(revs_diff):
async for id, info in revs_diff:

if info['missing']:

28

yield id, info['missing']

2.4.2.5. Replicate Changes
- 2.4.2.5.1. Fetch Changed Documents
write_input = count_docs(source.read(r_input, include_path=True),

hist_entry)

All documents that were read from the source database now need to be inserted into the
target database. This time, no conversion is necessary, but we still pipe them through an
extra async generator function count_docs to keep our history_entry up-to-date:

async def count_docs(docs, history_entry):
async for doc in docs:

history_entry['docs_read'] += 1
yield doc

. . . before performing the actual write action. Note that this is the point at which all the
generator functions start running. So this is the point at which the first change is retrieved,
analysed by the revisions difference reporter, then read from disk and finally written. All
in a single stream. This isn’t actually strictly according to the protocol, which requires
batching as it was written with an HTTP API in mind. For in-memory databases this is a
nice and clear way of doing things, though. The HTTP implementation of the database API
could work around this by performing batching internally, but that isn’t fully implemented
at the moment.

- 2.4.2.5.2. Upload Batch of Changed Documents
async for error in target.write(write_input):

- 2.4.2.5.3 TODO (attachments)
hist_entry['doc_write_failures'] += 1

It’s also worth mentioning that when performing continuous replication, none of the code
we will discuss next is currently run, because this loop stays blocked waiting for new
changes. Ideally, it would write a checkpoint every few changes instead. But this will do for
demonstration purposes.

We’re done writing. The following ensures all the writes we did are saved to disk, at least
for ‘normal’ (not memory-based) CouchDB installations:

- 2.4.2.5.4. Ensure In Commit
await target.ensure_full_commit()

One thing left to officially complete the replication process: merging the history entry with
previous replication logs and replacing these logs in the local documents so future replicator
calls have a checkpoint to start from. We do that as follows:

- 2.4.2.5.5. Record Replication Checkpoint
hist_entry['end_time'] = timestamp()
write_count = hist_entry['docs_read'] - hist_entry['doc_write_failures']
hist_entry['docs_written'] = write_count
hist_entry['end_last_seq'] = hist_entry['recorded_seq']

29

new_log_shared = {
'replication_id_version': REPLICATION_ID_VERSION,
'session_id': hist_entry['session_id'],
'source_last_seq': hist_entry['recorded_seq'],

}
if hist_entry['recorded_seq'] != startup_checkpoint:

new_source_log = {'history': build_history(source_log, hist_entry),
'_id': log_id, **new_log_shared}

new_target_log = {'history': build_history(target_log, hist_entry),
'_id': log_id, **new_log_shared}

await to_list(source.write(async_iter([new_source_log])))
await to_list(target.write(async_iter([new_target_log])))

The build_history function inserts the history entry into the existing log, throwing away
the oldest replication statistics to prevent the log from growing too large:

def build_history(existing_log, new_entry):
try:

existing_history = existing_log['history']
except TypeError:

return [new_entry]
else:

return [new_entry] + existing_history[:4]

You might wonder what async_iter and to_list are doing. They are small functions that
help you use the async API without writing async loops or having async input:

async def async_iter(iterable):
for item in iterable:

yield item

async def to_list(asynciterable):
return [x async for x in asynciterable]

Finally, we return the replication statistics to the caller:

- 2.4.2.4.4. Replication Completed
return {

'ok': True,
'history': [hist_entry],
**new_log_shared,

}

. . . and that’s all there is to it! Let’s come back to our municipality example one last time
and completely simulate what happens.

First, we set up the initial situation by creating databases for the server, Jane and Bob, and

30

inserting the ‘original’ document to the server. We replicate this change to the databases of
both Jane and Bob:

>>> server_db = InMemoryDatabase()
>>> jane_db = InMemoryDatabase()
>>> bob_db = InMemoryDatabase()
>>>
>>> server_db.write_sync({'_id': 'roadside', '_rev': '1-1a9c',
... 'trees_count': 40})
>>> await replicate(source=server_db, target=jane_db)
{'ok': True, ..., 'source_last_seq': 1}
>>> await replicate(source=server_db, target=bob_db)
{'ok': True, ..., 'source_last_seq': 1}

Now, Bob plants a tree, but doesn’t get the chance to replicate his change yet.

>>> bob_db.write_sync({'_id': 'roadside', '_rev': '2-e3b0',
... 'trees_count': 41, '_revisions':
... {'start': 2, 'ids': ['e3b0', '1a9c']}})

Jane also plants a tree, but replicates immediately:

>>> jane_db.write_sync({'_id': 'roadside', '_rev': '2-6e05',
... 'trees_count': 41, '_revisions':
... {'start': 2, 'ids': ['6e05', '1a9c']}})
>>> await replicate(source=jane_db, target=server_db)
{'ok': True, ..., 'source_last_seq': 2}

Now Bob comes back online and also replicates:

>>> await replicate(source=bob_db, target=server_db)
{'ok': True, ..., 'source_last_seq': 2}

The background process responsible for fixing the conflict is listening to the changes feed
and notices that there is now (possibly) a conflict:

>>> for change in server_db.changes_sync():
... print(change)
...
Change(id='roadside', seq=3, deleted=False, leaf_revs=['2-e3b0', '2-6e05'])

It retrieves the conflicting leaves:

>>> for doc in server_db.read_sync('roadside', 'all', include_path=True):
... print(doc)
...
{'_id': 'roadside', '_rev': '2-e3b0', 'trees_count': 41,
'_revisions': {'start': 2, 'ids': ['e3b0', '1a9c']}}

{'_id': 'roadside', '_rev': '2-6e05', 'trees_count': 41,
'_revisions': {'start': 2, 'ids': ['6e05', '1a9c']}}

31

. . . and fixes the conflict using two writes:

>>> server_db.write_sync({'_id': 'roadside', '_rev': '3-b617',
... '_deleted': True, '_revisions':
... {'start': 3, 'ids': ['b617', '6e05', '1a9c']}})
>>> server_db.write_sync({'_id': 'roadside', '_rev': '3-5bd6',
... 'trees_count': 42, '_revisions':
... {'start': 3, 'ids': ['5bd6', 'e3b0', '1a9c']}})

To make sure all the databases are again in sync, we also replicate the changes to the
smartphones of Jane and Bob:

>>> await replicate(source=server_db, target=jane_db)
{'ok': True, ..., 'source_last_seq': 5}
>>> await replicate(source=server_db, target=bob_db)
{'ok': True, ..., 'source_last_seq': 5}

Let’s check if that worked:

>>> next(jane_db.read_sync('roadside', 'winner'))
{'_id': 'roadside', '_rev': '3-5bd6', 'trees_count': 42}
>>> next(bob_db.read_sync('roadside', 'winner'))
{'_id': 'roadside', '_rev': '3-5bd6', 'trees_count': 42}

Success!

6 Conclusion
It surprised me that replication itself is actually a relatively straight-forward process once
you have all the endpoints in place. When I started out, I also expected coming up with
the right indices to be the most complex part of this experiment. Clearly, I underestimated
the complexity of working with the revision tree. Most of my time was actually spend on
getting that correct (hopefully!).

6.1 Extending the prototype: ChairDB
While the above is a full implementation of a CouchDB-compatible database and replication,
you might be interested to see the HTTP API and CouchDB database wrapper I described
in the testing section. The former is implemented using the Starlette web framework. The
latter uses the excellent HTTPX library. Both can be found in my ChairDB repository. It
also includes a database implementation on top of SQLite, in case you (rightfully) think an
in-memory database doesn’t cut it. Finally, it contains all the tests I wrote. I’m not yet
certain if I will continue to work on ChairDB. Perhaps.

6.2 Final words
If you read this far, congratulations! You now know how to write a CouchDB-compatible
database, including replication. If you write one of your own, or if you have any remarks,

32

https://www.starlette.io/
https://www.python-httpx.org/
https://github.com/marten-de-vries/chairdb

comments or questions, I’d love to hear from you. Drop me an email, or comment on HN.
Thank you for reading!

(venv) marten@procyon:~/Bureaublad/couch/chairdb$ cloc replicate.py
db/memory.py db/revtree.py db/datatypes.py db/shared.py --md

count lines of code | github.com/AlDanial/cloc v 1.82

Language files blank comment code
Python 5 161 175 365

33

mailto:m@rtendevri.es

	Introduction
	Why CouchDB?
	Alternative implementations
	Goal

	Conflicts
	Revision tree
	Representation
	Updating the tree

	An in-memory database
	Writing
	Reading
	Replication requirements

	Replication
	Intermezzo: testing
	Asynchronous database API
	Replicator implementation

	Conclusion
	Extending the prototype: ChairDB
	Final words

